
 

Surrogate Model Assisted Frequency Selective 
Surfaces Multifunctional Optimization 

Hongji Li, Muhammad Idrees, Huawei Lin, Sai-Wai Wong* 
State Key Laboratory of Radio Frequency Heterogeneous Integration, 

College of Electronics and Information Engineering, Shenzhen University, 518000, China 
Email: *wongsaiwai@ieee.org 

Abstract—In this paper, we presented a novel differential 
evolution (DE)-based optimization approach for accelerating 
the iterative design process of frequency selective surfaces (FSS). 
By integrating a Bayesian neural network (BNN) and lower 
confidence bound (LCB) prescreening methods, our approach 
constructs a simulation surrogate model that effectively 
leverages a priori knowledge from equivalent circuits. This 
method is well-suited for optimizing multifunctional filtering 
FSS designs using the same design prototype. The proposed 
algorithm's performance was validated through a typical case 
study, demonstrating its effectiveness in enhancing the 
optimization process. The realization details and code are 
available for further exploration. 

https://github.com/LeeHongji/FSS_auto_optimization.git 
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I. INTRODUCTION 
Frequency Selective Surfaces (FSSs) are widely used in 

applications such as absorbers, antennas, and radomes due to 
their ability to filter electromagnetic waves through periodic 
resonant unit designs [1]. Traditional evolutionary algorithms 
like genetic algorithms, particle swarm optimization, and 
differential evolution (DE) have been applied to FSS design 
but face challenges with computation speed and accuracy [2]. 
Recently, deep learning approaches have been used to 
optimize FSS designs, although they require large datasets and 
result in high computational costs [3]. This paper introduces a 
surrogate-model-assisted DE approach for multifunctional 
FSS design, aiming to enhance convergence speed and 
accuracy. Key innovations include an equivalent-circuit-
guided Bayesian neural network (BNN) for surrogate 
modeling, a lower confidence bound (LCB) method for 
selecting the best design, modified DE operators, and a new 
objective function tailored for FSS optimization [4]. 

II. ALGORITHM 

A. Overall Algorithm Framework 
The overall optimization process is shown in Fig.1, we use 

DE as the basic optimization algorithm in this design and use 
knowledge-guided BNN as the simulation surrogate model to 
find the locally optimal candidate. The algorithm works as 
follows: 

Step 1: Set the optimization objectives for S-parameters 
based on demand. 

Step 2: Build up the equivalent circuit for the problem 
based on the optimization objectives 

Step 3: Select the appropriate pattern of the FSS and 
build up the 3D simulation model according to the equivalent 
circuit. 

Step 4: Sample α  candidate designs from the design 
space [𝑳𝑳𝑳𝑳,𝑼𝑼𝑼𝑼]𝑑𝑑  ( 𝑳𝑳𝑳𝑳  and 𝑼𝑼𝑼𝑼  are the lower and upper 
bounds of design variables, respectively) using constrained 
Latin hypercube sampling method, the constrained set as 
ℎ(𝒙𝒙). Carry out EM simulations to obtain their performance 
values using CST and form the initial database. 

Step 5: If a preset stopping criterion is met (e.g., the 
computing budget is exhausted or satisfies the specifications), 
output the best candidate design from the database; otherwise, 
go to Step 6. 

Step 6: Obtain the N best candidate designs from the 
database to form a population 𝑷𝑷. 

Step 7: Apply the modified DE mutation operator and 
crossover operator to 𝑷𝑷 to create N new child solutions. 

Step 8: For each child solution, obtain τ nearest samples 
(based on the Euclidean distance) as the training data points 
and construct a BNN-based surrogate model. 

Step 9: Prescreen the child solutions generated in Step 7 
using the BNN model predictions and the LCB method. 

Step 10: Carry out EM simulation to the estimated best 
child solution from Step 9. Add this evaluated candidate 
design and its performance values to the database. Go back to 
Step 5. 

 
Fig. 1. The overall framework of the proposed optimization algorithm. 
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III. IMPLEMENTATION 

A. Experimental Example 
Fig. 2 illustrates the schematic diagram of the FSS. Such a 

prototype structure could realize a multifunctional filtering 
ability, including a single passband, double passband, triple 
passband, or stopband. We selected such a multilayer 
prototype FSS to demonstrate the algorithm's optimization 
ability. 

 
Fig. 2. (a) The top and bottom layer of the FSS (b) The middle layer of the 
FSS (c) The 3D view of the FSS 

Our objective function includes an optimization objective 
for S11 and an optimization objective for S21, where S11 
needs to be lower than -10dB within the frequency band 
𝒇𝒇𝑺𝑺𝑺𝑺𝑺𝑺 = (𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑙𝑙), and S21 needs to be lower than -15dB 
within the frequency band 𝒇𝒇𝑺𝑺𝑺𝑺𝑺𝑺 = (𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑘𝑘) . The 
composition of the objective function is shown below. 

𝐿𝐿𝑠𝑠11 = 𝑚𝑚𝑚𝑚𝑚𝑚 �0,� 20𝑙𝑙𝑙𝑙𝑔𝑔10|𝑆𝑆11(𝑓𝑓𝑙𝑙)|
𝑙𝑙

+ 10� (1) 

𝐿𝐿𝑠𝑠21 = 𝑚𝑚𝑚𝑚𝑚𝑚 �0,� 20𝑙𝑙𝑙𝑙𝑔𝑔10|𝑆𝑆21(𝑓𝑓𝑘𝑘)|
𝑘𝑘

+ 15� (2) 

Fig. 2 shows the design parameter set. As seen from the 
equivalent circuit diagram in Fig. 3(a), three layers of FSS are 
spaced by dielectric layers. We design the network structure 
of BNN as shown in Fig. 3(b) based on the prior knowledge. 

 
Fig. 3. The equivalent circuit diagram of the FSS and the BNN corresponds 
to the equivalent circuit diagram 

B. Optimization Result 
In Fig. 4(a)-(c), the optimization goal is a single passband 

with targets: 𝑆𝑆11  = [11GHz, 15.5GHz] < -10dB and 𝑆𝑆21  = 
[17GHz, 20GHz] < -15dB. Starting from the smallest 
objective function of 500 pre-collected data points (Fig. 4a), 
the optimization required only 22 iterations to get the result, 
as shown in Fig. 4(b), significantly reducing EM simulation 
time. For the multi-band design, targets are 𝑆𝑆11 = [11.5GHz, 
13GHz; 18GHz, 19.5GHz] < -10dB and 𝑆𝑆21  = [14.5GHz, 
16.5GHz; 21.5GHz, 24GHz] < -15dB. With an initial value in 
Fig. 4(d), the final result (Fig. 4e) was achieved in 35 iterations, 
as indicated by the convergence curve in Fig. 4(f), ensuring 
efficient optimization with minimal simulations. 

 
(a)                                                                              (d) 

 
(b)                                                                              (e) 

 
(c)                                                                              () 

Fig. 4. (a) Initial result of single passband example. (b) Optimization result 
of single passband example. (c) Iterative convergence curve of the single 
passband example (d) Initial result of multi-band example. (e) Optimization 
result of multi-band example. (f) Iterative convergence curve of the single 
passband example 

IV. CONCLUSION 
This paper introduced a differential evolution (DE)-based 

approach to speed up the design of frequency selective 
surfaces (FSS). By using a Bayesian neural network (BNN) 
and lower confidence bound (LCB) prescreening, we built a 
surrogate model that incorporates knowledge from equivalent 
circuits. This method is effective for optimizing 
multifunctional filtering FSS designs. The results demonstrate 
the efficient optimization performance of the algorithm. 
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